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 The Additive Manufacturing (AM) scheduling problem is becoming a very felt issue not only by 
the scholars but also by the practitioners who are looking to this new technology as a new 
integrated part of their traditional production systems. They need new scheduling models to 
adapt the traditional scheduling rules to the changed ones of the additive manufacturing. This 
paper deals with the enhancement of a scheduling problem for additive manufacturing just 
present in literature and the presentation of a new meta-heursitic (adapted to the new 
requirements of the additive manufacturing technology) based on the tabu-search algorithms. 
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1. Introduction 

 
From the beginning of the research works on the AM, the issues related to the operations management 
were not put in great evidence because the main goal for the starting research was to demonstrate the 
quality and the mechanical capability of parts realised with this new technology (Fera et al., 2016). This 
research effort was paid more and more in almost 30 years of research. Nevertheless, the operational 
issues related to the use of AM machines became a urgent issue to be faced when this kind of technology 
arrived in the real production contexts and the industrial practitioners called for new methodologies able 
to face the different rules of this new technology. These operational issues were faced in last ten years of 
research starting from the measurement of the cost performances of this technology (Ruffo & Hague, 
2007; Atzeni & Salmi, 2012; Rickenbacher et al., 2013, Costabile et al., 2017; Fera et al., 2017, 2018), 
arriving to the supplying problems related to the AM machines (Strong et al., 2018; Khajavi et al., 2014; 
Verboeket & Krikke, 2019). In this paper we will focus on another operations management issue that is 
the scheduling of these kind of machines and in particular we will investigate a solution method to 
improve the reduction of calculation time and the quality of the solutions. This aim will be achieved 
starting from a mathematical model just present in literature, i.e. (Fera et al., 2018). To this mathematical 
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model some parts will be added to make it more efficient; afterwards a modification of the traditional 
tabu-search algorithm will be presented and then compared to the meta-heuristic used in (Fera et al., 
2018) that is the genetic algorithm, to understand which are the advantages and disadvantages in using 
one or another to solve the scheduling problem cited.. In section 2 it is provided a wide literature review 
about AM production planning and scheduling. In 3rd section, the starting mathematical representation 
of additive manufacturing scheduling problem (AMSP) is re-proposed adding some specifications and 
corrections to the model just presented in Fera et al. (2018). Section 4 provides the modification of the 
tabu-search algorithm and in the section 5 the modified algorithm will be compared in terms of results to 
the one used in (Fera et al., 2018). Finally, conclusions are drawn in Section 6, the results from the test 
case are discussed and future research and improvements are presented. 
 
2. Literature review  
 
As before anticipated, the AM research started more or less thirty years ago and during this time span 
several engineering research issues were faced. According to Witherell et al. (2017) the AM research 
topics are associated with many fields of the engineering knowledge and, in particular, they are related 
to the design of product and process engineering. Moreover, as far as management issues are concerned, 
AM was studied from several viewpoints. For instance, in Pour et al. (2016) the problem is faced through 
a reconfiguration of production systems and supply chains, and the use of this kind of technology is 
individuated as a main source of improvement for both systems. Fruggiero at al. (2016) studied 
interactions between humans and machines using AM technology. It is probably also worth to note that 
AM is generally listed as a key enabling technology for the achievement of the Industry 4.0 paradigm 
(Dilberoglu et al., 2017; Fruggiero et al., 2016).  
 

 
Fig. 1. The growth of interest for the research themes related to the additive manufacturing operations 
scheduling and planning 
 
Since this technology is recognised as a mature technology to be inserted in the value flow of industries, 
it needs to be analysed in terms of planning and scheduling to allow their management in conjunction 
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with all the other machines of the production environment and objective of this paragraph will be focused 
on the study of the actual state of the art about the scheduling models for single machines using AM 
technology. To this extent, one of the main research databases today available will be inquired to 
understand how much the aim of this paper was studied in the past and what is the state of the art about 
the planning and scheduling for AM in general. The chosen database for the systematic literature review 
is ScienceDirect®. The research words used are: (i) scheduling additive manufacturing, (ii) planning 
additive manufacturing, (iii) planning and scheduling additive manufacturing, (iv) production planning 
additive manufacturing and (v) single machine scheduling additive manufacturing. At a first attempt, the 
search on the database previously indicated showed more than thirty thousand papers available, from 
2001 to date. For all the research themes indicated, the trend of the number of papers WAs growing 
during the time as shown in Fig. 1. Once it was cleared that the interest about the themes previously 
indicated, it was investigated which are the journals that give more attention to these research themes, in 
the following graph it is shown the number of papers for each journal individuated between the most 
popular on this theme. 
 

 
 

Fig. 2. The number of papers on planning and scheduling for each journals 
 
As it is evident from Fig. 2, the main journal that publishes researches about the planning and scheduling 
of AM is Journal of Cleaner Production edited by Elsevier, since this forum is dedicated for the 
sustainability of the productions. The second and third ones are close to the classical world of the 
operations management, respectively. The first more concentrated on the mathematical aspects of the 
scheduling problem, the second more focused on the management of operations issues. The same of this 
last case can be said on fourth and fifth journal of Fig. 2. Within the first five journals, that covers almost 
the 50% of the total number of papers about the planning and scheduling for AM, the research themes 
investigated are divided as shown in Fig. 3. As it is clear from Fig. 3 the main interests and the main 
results of research are in the field of planning and scheduling even if most part of the paper selected, 
using the method here presented, are not strictly related to the AM issues. Moreover, the problem of 
single machine scheduling for AM is the less developed in the research world and also for this specific 
field of knowledge it is confirmed the fact that the problem faced are not related to the AM specific issues 
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and rules. This result (in Fig. 4) is also confirmed by the analysis of the keywords of all the papers in the 
main journals before introduced on the specific research theme of the single machine scheduling. 
 

 
Fig. 3. The number of papers for each research theme for the main journals of interest 

 

 
Fig. 4. The words cloud for single machine scheduling problem for AM in the five most important 
journals individuated 
 

The keywords were analysed using the word cloud method that reports the words more frequent in a 
database with different size of the word to represent the growing frequency. In Fig. 4, 322 keywords were 
analysed and only the words with a higher word count than three is reported. As it is easy to see from the 
Fig. 4 the word manufacturing is present in many sources, but the word additive is not, this is mainly due 
to the fact that models developed are not strictly related to the problem of additive manufacturing. 
Starting from this point, the aim of this paper is to focus on the attention on this weak research field. 
Following in this paragraph, a specific literature review on the few models about the single machine 
scheduling problem for AM is presented. The first time in which the process planning using AM appeared 
as a main research issue was in 2008 (Ren et al., 2008) but it was not deeply investigated until a 
mechanically reliable metal was available. Li et al. (2017) proposed work about distributed AM 
machines’ production planning when the machines are called to realise a cumulative demand created by 
the sum of several different small quantity orders by also different clients; the authors, recognising the 
problem as NP-HARD, defined several heuristics on the geometrical constraints principle when an AM 
machine was used. Therefore, the study by Li et al. (2017) could be of reference for our purpose but it 
refers to the raw-material cost minimisation that is not useful for the aim of the production flow 
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optimisation. Ransikarbum et al. (2017) proposed a decision-support model based on the orientation 
optimisation of a unique PN on multiple AM machines. This model refers to a multi-machine 
environment and considers the possibility to produce only one-part type at the time; it does not exactly 
match the objective of this paper. Moreover, it uses an optimisation process based on the part orientation, 
which is out of the scope herein that wants to optimise the E&T optimising the lot sizing of the single 
build run. Jin et al. (2017) focused on the process planning theme using AM. Additionally, this research 
deals with the definition of process planning to minimise the raw-material consumption for the AM; 
therefore, for the same reasons of the paper by Li et al. (2017), it is possible to say that the model does 
not fit exactly with the aim of the optimisation as it is intended in this paper. Another interesting work 
on the assignment of a specific job to a build was presented by Zhang et al. (2016), who focused on the 
optimal multiple parts placing in the building chamber with respect to user-defined objectives but it is 
very far from the E&T minimisation problem for the single-machine scheduling that we want to face. Zu 
et al. (2017) based their research on a framework defined by Newman et al. (2015) and they investigated 
specifically the combination of the old and new production technologies in terms of process planning 
with an objective to optimise the modification process of existing products. In 2018, Chergui et al. 
developed a model capable to schedule the production to satisfy a certain demand level, minimizing the 
tardiness of the orders; the problem is solved applying a heuristic written in Python. Recently some 
researchers more focused on the AM different production organizations such as the single machine, 
parallel identical machines and non-identical ones faced the problem of the scheduling also. Kucukkoc 
in 2019 developed a research about the comparison of these three different production organizations 
identifying a mathematical formulation of this problem with the objective function focused on the make-
span and applying the algorithms of CPLEX by IBM to solve the problems (Kucukkoc, 2019).  In 2018 
Fera et al. developed a mathematical model that tries to optimize a multi-objective function based on the 
earliness & tardiness (E&T) and on the production cost subject to several constraints related to the 
demand satisfaction and to the respect of the chamber volume of the AM single machine. The problem 
was solved using a modified genetic algorithm capable of elaborating the specific rules of management 
imposed by the AM. As it is clear from the previous papers, the single machine scheduling problem 
applied to the AM, from a cost and time point of view, is faced only by Fera et al. (2018). For this reason, 
here a modification of the original mathematical model and a modified tabu search algorithm will be 
presented to be compared with the genetic algorithm that was used in the original paper. 
 
2. The proposed scheduling model 
  
As introduced earlier, this paper deals with the presentation of some modifications of the model presented 
in Fera et al. (2018) and of a new heuristic result when applied to the mathematical model here presented. 
It is worth to note that the tabu-search here presented needed to be changed from its traditional 
formulation due to the different management needs of the AM. The following modifications are 
implemented in the past model:  
 

(i) the weights for the E&T are no more defined by mathematical formulas but left to the 
decision maker (i.e. the decision maker will decide autonomously if the earliness is more 
important than the tardiness, the contrary or they are equally important for his application 
case) and  

(ii) the completion time of the generic order for a specific part number is now defined in detail.  
 
The model to optimise the production scheduling has a double objective, the completion time (CTi) and 
total order cost (TOCi). Given these definitions, let us to report the mathematical formulation of the 
optimisation problem analysed by Fera et al. (2018) that is a NP-HARD problem. 
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𝑭𝑺 = 𝑭𝑬𝑻 + 𝑭𝑪𝑷 𝑴𝒊𝒏! 

where   

𝐹ா்

= ෍[𝛼 𝐸௜ + 𝛽 𝑇௜

௡೒

௜ୀଵ

] 

  

𝐹஼௉ = ෍ 𝛾ௌ𝑇𝑂𝐶௜

௡೒

௜ୀଵ

 
  

subject to:    

෍ 𝑛௜,௝ ∗ 𝑉௜

௡௚

௜ ୀଵ

≤ 𝑉௖௛௔௠௕௘௥ ∀ 𝑗 ∈ [1, 𝑛௕] 

෍ 𝑛௜,௝ =  𝑑௜ , ∀𝑖 ∈ [1, 𝑛௚] 

௡௕

௝ୀଵ

 

𝛼ௌ, 𝛽ௌ, 𝛾ௌ, 𝑇𝑂𝐶௜, 𝑉௜, 𝑉௖௛௔௠௕௘௥ ∈ ℝା 
𝐸௜, 𝑇௜, 𝑖, 𝑗, 𝑛௚, 𝑛௕  ∈ ℤା 

where 

𝛼ௌ: Earliness constant weight [1 𝑑𝑎𝑦⁄ ] 

𝛽ௌ: Tardiness constant weight [1 𝑑𝑎𝑦⁄ ] 

𝐸௜: Earliness of the 𝑖– 𝑡ℎ geometry [𝑑𝑎𝑦] 

𝑇௜: Tardiness of the 𝑖– 𝑡ℎ geometry [𝑑𝑎𝑦] 

TOCi: Total order cost of the i-th 
geometry 

[€] 

𝛾ௌ: Cost constant weight [1/€] 

𝑛௚: number of order/geometries [−] 

𝑛௜,௝ Number of the 𝑖– 𝑡ℎ item in 𝑗– 𝑡ℎ 
build  

[𝑝𝑎𝑟𝑡] 

𝑉௜ Volume of the 𝑖– 𝑡ℎ geometry [𝑐𝑚ଷ] 

𝑉௖௛௔௠௕௘௥ Build chamber volume [𝑐𝑚ଷ] 
𝑛௕  Number of builds in the schedule [−] 

𝑑௜: demand of the 𝐺௜ − 𝑡ℎ geometry  [𝑝𝑎𝑟𝑡] 
 
So, the first issue to be solved by the production planner is the balance of E&T (E&T), which are 
traditionally defined for the h-th job as follows: 

𝐸௛ = 𝑚𝑎𝑥(0, 𝑑𝑑௛ − 𝐶௛), 𝑇௛ = 𝑚𝑎𝑥(𝐶௛ − 𝑑𝑑௛, 0), 
where 

𝑑𝑑௛: Due date of the h-th job  [𝑑𝑎𝑦] 

𝐶௛: Completion time of the 
h-th order 

[𝑑𝑎𝑦] 

The common and traditional notation used to present the single-machine E&T problem is 
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1|| ෍ 𝛼𝐸௛ + 𝛽𝑇௛

௡

௛ୀଵ

, 

where 

𝐸௛: 
Earliness of ℎ– 𝑡ℎ 
job 

[𝑑𝑎𝑦] 

𝑇௛: 
Tardiness of h–th 
job 

[𝑑𝑎𝑦] 

𝑛 number of jobs [#] 

𝛼: 
constant weigh for 
E 

[1 𝑑𝑎𝑦⁄ ] 

𝛽: 
constant weigh for 
T 

[1 𝑑𝑎𝑦⁄ ] 

 
As previously introduced, in the 2018 model the weights of E&T, as obtained by the calculations of 
mathematical formulas, are considered but their values are in the decision field of the production manager 
that will consider more relevant the earliness or the tardiness according to strategic considerations, only 
respecting the fact that the E&T weights complement each other. Lastly, in the paper the way to compute 
the completion time, needed for the calculation of earliness and tardiness reported previously, is 
presented.  

𝐶௛ = ෍ 𝑡௝ where 

௡್∗

௝ୀଵ

෍ 𝑛௛௝

௡್∗

௝ୀଵ

= 𝑑௜ ∀ ℎ = 1, 𝑛௚ 

where 

𝑡௝: Building time for 𝑗– 𝑡ℎ build [𝑑𝑎𝑦] 

nhj 
number of units of the h-th geometry in 
build j 

 

dh Demand for geometry i  

nb* 
Latest build in which geometry i is 
produced 

 

ng Number of geometries or orders   

 
In any case, note the production time tj of each build depends on the type of parts that compose of the 
build. In fact, in the previous equation, it is considered that the time to complete at the last build nb* the 
total number of parts produced for each h-th part is equal to its demand di is as expressed in the previous 
notation. Thanks to these two simple added formulas hopefully the mathematical model to optimize the 
scheduling of the AM machine will be easier and clear to be implemented in real cases. 
 
3. Solution methods 
 
As introduced in the previous paragraph of this paper a modification of the classical tabu-search (TS) 
algorithm will be presented to fit the specific issues related to the use of the AM machine technology. 
This method (i.e. TS) was originally introduced by Glover and Laguna (1997a,b); it is one of the most 
famous metaheuristic algorithms and is commonly used to solve continuous or discrete problems. The 
TS approach is simple but extremely efficient; it is a local search algorithm, which includes a mechanism 
to escape from the local minimum and to overcome the limitations of some common heuristics. TS needs 
an initial feasible solution to start exploration. Applying a move to the initial configuration, TS can 
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produce new schedules but not all candidate solutions are acceptable. In fact, TS uses a memory structure, 
known as a Tabu list (TL), to avoid already analysed solutions. TL holds the current OF value (𝑓଴) and 
the attributes, i.e. all necessary information concerning performed moves. Each move produces a new 
value for the OF (𝑓௡௘௪) and, if it is better than the current one, the move is accepted, and the value of the 
OF is updated (𝑓଴ = 𝑓௡௘௪). Once the TL is updated, with attributes and OF value, research is iterated as 
reported in Fig. 4. Moreover, it is possible to define specific search criteria, which introduce 
reinforcement towards some search directions and/or penalties towards others. TS has no convergence 
criterion but a termination criterion, such as in the example of maximum run time and number of 
iterations and unsuccessful (not improving) iterations. To understand how the TS algorithm will be 
specialised for the single AM scheduling problem, let us first give an example of how a move is applied 
to a standard single-machine scheduling problem. In a single-machine scheduling problem, there is a 
typical move, known as swap. Given a feasible job sequence on a machine, TS performs a swap of jobs 
in various ways: 
 

 Following job swap 

 Random job swap 
 

These kinds of swap are hardly applicable to the AM scheduling problem (that has a matrix schema); 
therefore, it is necessary to give a definition of what a swap (or move) is for an AM scheduling problem. 
Swapping matrix columns (i.e. assigning the partial and total quantities of one geometry to another) is 
not a solution because total quantities to be produced for different geometries are, normally, different. 
Refer to the quantities of orders #1 and #2, highlighted in red, in Fig. 5. 
 

S 
Geometries 

1 2 3 … ng 

B
ui

ld
 

1 n1,1 n2,1 n3,1 … ng,1 

2 n1,2 n2,2 n3,2 … ng,2 

3 n1,3 n2,3 n3,3 … ng,3 

… … … … … … 

nb n1,nb n2,nb n3,nb … nng,nb 

Fig. 5. Swap attempts 
 
A second attempt could be to swap matrix rows, which represent builds. This move is possible because 
it comprises a build sequence exchange, without alteration of volume or production constraints, as we 
can see for #1 and #2 builds in Fig. 5. It is important to note that a full analysis of all possible row swaps 
is a very difficult objective, especially in case of a high number of builds, since the number of possible 
combinations is 𝑛௕! Nevertheless, the first experimental campaign revealed that build swapping produced 
very small improvements in the OF value. This might be due to the fact that, generally, the initial solution 
was already oriented to a great saturation of the production chamber. So, a simple swap between builds 
was not able to achieve significant improvements in terms of costs. However, this circumstance needs to 
be better investigated. However, this preliminary result shows that different swap moves had to be 
identified for the AM scheduling problem. Before we introduce the new swap move, let us introduce the 
general TS algorithm applied in this paper (PTS), which specialises in a particular swap movement. The 
first step of the algorithm is the definition of a first feasible solution, namely 𝑆଴, for which it would be 
possible to compute the corresponding value of the OF, namely 𝑓଴. After this first step, a random value 
for a parameter useful to change the elements of the first solution in the proposed swap move is decided; 
this parameter is namely 𝜀, a positive integer, that will help to modify the quantity of the 𝑗 − 𝑡ℎ build for 
the 𝑖 − 𝑡ℎ geometry. After these two initialisation steps, the algorithm starts to investigate the local 
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dominium of research applying small moves (compliant with the rule later defined) of the quantities. 
After executing the first local research, the algorithm finds the best value of the OF and associates it with 
the assignment solution, thus defining a new solution 𝑆ଵ; this becomes the new starting solution. The old 
one is registered in the TL, and the procedure is repeated. If in comparison with the OFs, the value of the 
new ones is equal to or less than the previous one, then a calculation module, named Differentiate 
Module, is executed to try to go out of the local minimum; if this attempt fails two times, the algorithm 
stops itself. The TS algorithm resumes before it reaches an organisation quite similar to the traditional 
TS. Moreover, it is quite clear that the Schedule Screening module is the main block of PTS and requires 
to be analysed deeply. In this module, the variation of the traditional swap model is present; the proposed 
swap moves a discrete quantity (indicated as 𝜀,) between two different builds, which is randomly in a 
specified interval. The steps to apply this swap move are as follows: 
 

 Set randomly a column 𝑖 in the matrix: 𝑖 ∈ ൣ1, 𝑛௚൧; 

 Set randomly first build, called picking build: 𝑏௣ ∈ [1, 𝑛௕]; 

 Set randomly another build, called destination build: 𝑏ௗ ∈ [1, 𝑛௕] − ൛𝑏௣ൟ; 

 Exchange a discrete quantity 𝜀 between selected builds, as the following equations 
indicate:  

𝑛௡௘௪
௜,௕೛

= 𝑛௜,௕೛
− 𝜀; 𝑛௡௘௪

௜,௕೏
= 𝑛௜,௕೏

+ 𝜀, with 𝜀 ∈ ቂ1, 𝑛௜,௕೛
ቃ; 

Once the above steps have been completed, the algorithm saves the value of OF with the attributes of the 
swap move in a TL and restarts the algorithm as previously introduced. These operations are synthetically 
called Schedule Screening. With the OF value, the following vector is recorded also with the chosen 
geometry, the starting and destination build and the exchange value between the two builds will selected 
and recorded in in the vector named attribute. 
 

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 =  ൣ𝐺௜, 𝑏௣,  𝑏ௗ, 𝜀൧. 
 

The proposed swap movement respects the production constraint because it is an exchange of a quantity 
ε along a single order, so it is moved only a quantity from an addendum to another, having the total sum 
still the same; nevertheless, it has to respect the chamber volume constraint, so not all the swap moves 
are feasible and they require a check of feasibility before the OF is calculated (even if, as it will be 
explained later, some moves to avoid this inconvenience are possible). 
 

S 
Geometries  

1 2 3 4  

Bu
ild

 1 7 0 4 1 OF = 7.64 
2 0 7 0 1  
3 0 0 1 0  
4 0 1 0 4  

Fig. 6. Initial Schedule  
 
Table 4 presents an initial random schedule with an OF value of 7.64. When the proposed swap is applied 
to the selected order (𝑖 = 1) and to builds (𝑏𝑢𝑖𝑙𝑑ଵ,ଶ), the OF value decreases to 7.08 moving a single part 
to the second build and checks that the move is compliant with the chamber volume available and the 
sum of the parts is always equal to demand for the i-th geometry. It is worth to note that the screening 
steps are contained in a while loop with a termination criterion characterised by a not improving 
subsequent iterations equal to 2. As mentioned before, the proposed swap movement does not produce 
any violation on the demand constraint but it is not possible to say the same about the geometrical volume 
constraint. In fact, it could happen that swapping a quantity 𝜀 between two builds implies an unacceptable 
condition in the destination build that is already full. This case is represented using another example of 
scheduling, presented in Fig. 7. In this case, the swap could seem not acceptable for the movement of the 
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quantity of the fifth geometry in the green rectangle. This exchange could lead to a violation of the 
volume chamber constraint, which is 13437.50 cm3 in our example. Nevertheless, it is worth noting that 
in the overall schedule, some free volume is available. In fact, it is possible to move away some 
geometries from build #2 to make feasible the initial swap movement proposed. For instance, some units 
of orders in the blue rectangle could be allocated in other free builds for the same geometries (for instance, 
in the yellow square builds) verifying the total quantity of the geometry. 
 

 
S 

Geometries 
Vused [cm3] Vavailable [cm3] 

 1 2 3 4 5 

So
lu

tio
n 

be
fo

re
 m

ov
es

 

Bu
ild

 

1 69 2 21 1 40 4329.09 9108.41 

2 4 24 30 1 133 13419.84 17.66 

3 3 23 55 8 127 13396.07 41.43 

4 64 85 91 274 62 13385.5 52 

5 9 55 111 16 115 13394.9 42.6 

6 1 11 92 0 123 13434.71 2.79 

Fig. 7. Volume management 1 of 2 
 

This re-allocation, when the chamber volume constraint is violated, could be executed through an 
adaptation algorithm proposed here that automatically moves a fixed number of units to make an 
overflowing build feasible again. The process is reported in the following steps: 
 

1. Compute extra–volume; 
2. Compute the number of geometries necessary to reset extra volume and 
3. Relocate each group of geometry in the following available builds. 
 

As the last part of the algorithm has been explained, let us to refer to the following figure to represent the 
PTS proposed here (Fig. 8). 

 

Fig. 8. The PTS proposed 
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3.1 Test case 
 
To better estimate the goodness of the proposed TS (Fig. 8) the test case presented in Fera et al. (2018) 
will be used. This was done to reduce the bias related to the test case building that could infer significant 
advantages to the new proposed method of solution. Therefore, the two heuristics tested will be the PTS 
here proposed and the genetic algorithm proposed in the 2018 paper. The comparison of the two heuristics 
will look at the following aspects: 

 respect of due dates measured as the service level (i.e. the number of orders delivered compared 
to the ones of the demand vector), 

 cost reduction, and 

 elaboration time for each algorithm. 
 
The Test case data (Table 1) are built to stress the scheduling problem faced. It is constituted by 30 PNs 
that are very different from one another; all of them are parts with very low demand volumes.  
 
Table 1 
Test case data 

PN [#] DD [day] D [part] V [cm3] h [mm] ρ [g/cm3] Tprep [hours] Penalty [%/day] smax [cm2] 
1 120 7 146 50.55 8 1 1 82.1 
2 60 5 52.87 85 8 1 2 120 
3 180 10 108,9 62.5 8 1 2 344.22 
4 120 7 64.17 37.73 8 1 1.5 21.00 
5 120 5 200.8 183.4 8 0.5 3 208.08 
6 90 5 66.94 56.02 8 1 1.5 178.72 
7 120 5 90.15 95 8 0.5 2 57.04 
8 120 8 188.2 162.5 8 1 2 104.56 
9 150 9 33.65 32.29 8 1 1.5 97.12 

10 180 9 290.2 186.6 8 1 1.5 112.28 
11 60 5 62 150 8 0.5 1 176.71 
12 180 10 6 73 8 1 2 41.85 
13 180 10 9 65 8 0.4 1 33.18 
14 90 8 56 115 8 0.6 2 103.869 
15 120 5 17 100 8 0.4 1 213.82 
16 150 8 44 165 8 0.4 3 78.54 
17 120 7 4.87 100 8 0.1 1 3.14 
18 60 5 2,9 22 8 0.2 1 38.48 
19 180 10 112 70 8 0.4 1 116.90 
20 90 5 150 122 8 0.4 2 201.06 
21 150 8 375 160 8 0.7 1 4.91 
22 60 5 17.5 25 8 0.1 1 28.27 
23 90 6 36 60 8 0.2 1 12.57 
24 120 7 13.4 40 8 0.2 1 10.18 
25 90 5 22.6 36 8 0.3 2 9.62 
26 120 7 7 35 8 0.4 2 12.57 
27 60 4 11 40 8 0.4 1 10.18 
28 90 5 4 45 8 0.4 2 9.62 
29 120 7 15 50 8 0.4 2 19.63 
30 180 10 0.569 20 8 0.4 2 3.14 

 
The deliveries have to be performed from the 60th to the 180th day, i.e. the demand covers a time span 
of 6 months. The build chamber volume is 𝑉௠௔௫ = 13437.50 𝑐𝑚ଷ. The solution algorithms run for 250 
repetitions, the experiments revealed no particular variances of the results; so, it is worth to note that the 
results are the mean values of the parameters before introduced calculated on the population of the 250 
experiments. The standard deviation of the experimental results was almost of 6.6%, measured as the 
mean of the ratio of the standard deviation of each evaluation parameter and the mean value. The 
simulation runs were performed on a calculation machine with Intel Core i7®-7700HQ, CPU of 
2.80 𝐺𝐻𝑧 and 16 𝐺𝐵 of RAM. All algorithms are coded in Matlab® 7 R2015a. It is worth noting that the 
CPU frequency is comparable with the one used for the experiment by Fera et al. in 2018; therefore, the 
results can be compared. As underlined in the paper whose results are compared with the current results, 
a value of the k parameter 0 < 𝑘 ≤ 1 capable of modifying the maximum chamber volume is chosen: 
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𝑉௔௩௔௜௟௔௕௟௘ = 𝑘 × 𝑉௠௔௫ . 
This simple algorithm generates a first random vector of integers, by randi() Matlab® function; after this, 
the algorithm verifies production and volume constraints. If the build is feasible and partially empty, an 
Optimisation Module starts to fill it with the PNs with a sooner due date. The random build generation, 
as well as the 𝑘 parameter, contribute to diversification of solutions. A possible initial feasible population 
for the test case data is computed using the previous said Matlab module; however, due to less space, it 
is not shown. 

 

3.2 The PTS and PGA results 
 

Before to start with the analysis of the results; note that the initial values of the evaluation parameters are 
similar among the two methods used, so it is worth to investigate also the percentage improvement given 
by the use of the two heuristics. PTS needs only one schedule as input, so we selected one feasible in the 
initial set, with the least OF value 𝐹௦ = 29.20. As explained before, the PTS procedure needs to define a 
proper value for 𝜀. After the result given by the selection of the value 𝜀 = −1 are presented; we can 
appreciate a OF reduction of 82.00%; running time for PTS is 1.32 minutes. The genetic algorithm (GA) 
used was the one proposed in 2018 (PGA) gives good solutions, with sensible reduction of OF, which 
are worse than those of PTS. In all the 250 experiments, iteration numbers for the PGA are greater than 
1000 in almost all experiments and less only in one case (i.e. the tenth one, with a total number of iteration 
equal to 478, which presents the worst result among trials). For the genetic algorithm the OF 
improvement is higher than 75%, whereas the cost of production decreased by 8.12% and the LS 
increased by 32.12%. 
 

Table 2 
The results of Genetic Algorithm and TS 

   Initial Final ∆ [%] 
Genetic OF [-] 29.20 7.01 −75.9 

CP [k€] 163.30 150.06 −8.12 
LS [%] 49.12 65.00 +32.12 

Tabu Search OF [-] 29.20 4.89 −82.00 
CP [k€] 165.30 145.57 −11.94 
LS [%] 46.67 80.00 +71.43 

 

The overall results for the genetic algorithm are worse than those for PTS ones, but the remark of PGA 
is to make sure the running time is 0.20 min, i.e. about 12 s. The repetitions of the experimental cases 
and the low value of the standard deviation of the outputs of simulation lead us to affirm that the PTS 
performances are better than the genetic algorithm, even if the running time of execution of the two 
heuristics is sensibly different with a clear advantage in using the genetic algorithm. The running time of 
the calculation procedures could be an important issue when the problem size increases and goes up in 
umber of part numbers and variable examined and calculated by the iterative procedures. 
 

  
Fig. 9. Comparison of the 250 experimental values for the 

OF using PTS and PGA 
Fig. 10. Comparison of the minimum and maximum values 
of the service level for the 250 experiments 
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The following presents the comparison for single evaluation parameter. Let us start with the value of the 
objective function. In Fig. 9, the orange points represent the values of the objective function using the 
genetic algorithm and the blue points are, instead, the results of the model using the tabu search, as it is 
possible to see the results of PTS are always less than the ones using the PGA. The shapes of the other 
evaluation parameters are more or less similar to the ones showed in Fig. 9.  It is worth to note, instead, 
that the service level offered by each method present an intersection of the areas of minimum and 
maximum for all the experiments as shown in Fig. 10. Lastly, below (in Table 3) it is reported the standard 
deviation measured as percentage of the mean value for the specific evaluation parameter analysed. As 
it is possible to see the deviation is low for all the parameters used. 
 

Table 3 
Standard deviation of the results produced by the solution method for a sample of 250 experiments 

  PTS PGA 

  OF - PTS CP LS Time execution OF - PGA CP LS Time execution 

Standard Deviation 5,62% 6,48% 6,00% 7,63% 5,57% 5,58% 6,51% 6,98% 

 

4. Conclusions and discussion of the results 
 

Herein, an updated version of a recently presented optimisation model has been illustrated for the 
operations management optimisation using a single machine with the AM technology. Moreover, a new 
heuristic to face this problem specifically applied to the AM technology was presented. The updated 
mathematical model (that is a NP-HARD problem) was solved adapting a traditional heuristic to respect 
the AM technological characteristics, i.e. the TS algorithm. This algorithm was applied to the same test 
cases used by Fera et al. (2018), to guarantee the bias absence due to the test case building. The test case 
used is the one in which a traditional manufacturing production system receives orders that generally 
have difficulties to be respected since they are low in volumes orders and with high geometrical 
variability. At the end of this paper, it is possible to compare the results of these two heuristics, i.e. the 
PGA and the PTS. It is possible to see a significant advantage to the PTS results in terms of operations 
management performances. The only point in favour of the PGA is the running time, which is 12 s instead 
of 92 s for the PTS. Therefore, it is possible to say that in terms of efficiency, the PGA seems to be a 
better solver than the PTS, even if the operative results are in favour of the PTS. Nevertheless, in case 
the number of orders of different part numbers grows significatively the cited efficiency of genetic 
algorithm could be a winning key of analysis, neglecting a better result in terms of key performance 
indicators (KPI) for operations management. In fact, the PTS is better than the PGA for all the three 
evaluation parameters (i.e. the value of the OF, the value of production costs and the service level 
percentage), whereas it is less performing than the PGA in terms of the running time. In future, other 
possible heuristics could be applied to the specific management problem here presented and possible 
improvement of both the KPI for the operations management and for the running time of calculation 
execution could be individuated. 
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